EXERCICES : SUITES NUMÉRIQUES Partie 1

I Généralités sur les suites

I.1 Définitions

Exercice 1

- 1. u_{32} est le 28^e terme de la suite (u_n) . Quel est l'indice du 29^e ? du 27^e ?
- 2. u_{15} est le 12^e terme de la suite (u_n) . Quel est l'indice du premier terme?

Exercice 2

- 1. Soit (v_n) la suite définie sur \mathbb{N} par son premier terme $v_0 = 3$ et la relation de récurrence $v_{n+1} = 1 v_n$. Déterminer v_1 , v_2 et v_3 .
- 2. Soit (w_n) la suite définie sur \mathbb{N} par son premier terme $w_0 = -4$ et telle qu'en multipliant un terme par 3, puis en lui ajoutant 1 on obtienne le terme suivant. Déterminer w_1 et w_2 . Donner la relation entre w_{n+1} et w_n .
- 3. Soit (w_n) la suite définie sur \mathbb{N} par son premier terme $w_0 = 2$ et telle qu'en multipliant un terme par 2, puis en lui ajoutant -1 on obtienne le terme suivant. Déterminer w_1 et w_2 . Donner la relation entre w_{n+1} et w_n .

Exercice 3

Pour chacune des suites données, calculer les termes u_1 , u_2 et u_{100} quand c'est possible.

- 1. $u_n = n \sqrt{n^2 + 9}$
- 2. $u_n = \frac{n+5}{n(n-1)}$

Exercice 4

- 1. Pour les suites données, calculer les termes $u_{n-1}, u_{n+1}, u_{n+2}$ et u_{2n} .
- (a) $u_n = n^2 3n + 1$
- (b) $u_n = \frac{n+1}{2n+3}$
- 2. Soit (u_n) la suite définie sur \mathbb{N} par $u_n = n^2 + 1$.

Déterminer, en fonction de n, l'expression des termes précédent et suivant u_n .

Exercice 5

La suite u est définie sur \mathbb{N} par $u_n = -n^2 + 5n + 1$.

- 1. Déterminer les sept premiers termes de la suite.
- 2. Représenter graphiquement ces termes dans un repère $(O; \vec{i}, \vec{j})$.
- 3. Montrer que les points correspondants sont situés sur une parabole dont on précisera une équation.

Exercice 6

La suite (u_n) est définie sur \mathbb{N} par $u_n = n^2 - 14n$.

- 1. Déterminer les termes u_0, u_1, u_2, u_3 et u_4 .
- 2. Déterminer l'entier n tels que $u_n = -49$.
- 3. Représenter graphiquement les cinq premiers termes de la suite dans un repère $(O; \vec{i}, \vec{j})$ à l'aide de GeoGebra et montrer que les points correspondants sont situés sur une parabole dont on précisera l'équation.

I.2 TICE

Exercice 7

On considère l'algorithme suivant, qui après avoir saisi A et N affiche la valeur de A calculée :

Pour
$$I$$
 allant de 1 à N
$$A \leftarrow 2 \times A - 1$$
 Fin Pour

- 1. Quelle valeur de A sera affichée après l'exécution de l'algorithme :
- (a) Si on entre A = 1 et N = 5?
- (b) Si on entre A = 2 et N = 3?
- 2. Vérifier vos résultats en programmant en Python.
- 3. Quelle suite est définie dans cet algorithme?

Exercice 8

Soient (u_n) et (v_n) les suites définies par :

$$u_n = 2n + 1$$
 et
$$\begin{cases} v_0 = 1 \\ v_{n+1} = 2v_n + 1 \end{cases}$$

On utilise un tableur pour calculer les termes des deux suites.

- 1. Mettre n dans la cellule A1 , u_n dans la cellule B1 et v_n dans la cellule C1 .
- 2. Mettre dans la cellule A2 la valeur 0 et dans la cellule A3 la valeur 1. Par recopie vers le bas obtenir dans la colonne A les 20 premiers entiers naturels.
- 3. Quelles valeurs mettre en B2 et C2?
- 4. Quelle formule mettre en B3 (resp. C3) afin d'obtenir les 20 premiers termes de la suite (u_n) (resp. (v_n)) par recopie vers le bas?

Exercice 9

Soit (u_n) la suite définie sur \mathbb{N} par son premier terme $u_0 = 2$ et la relation de récurrence $u_{n+1} = 2u_n - 3$. Déterminer à l'aide de la calculatrice graphique les termes $u_1, u_2, \dots u_{20}$.

I.3 Variations

Exercice 10

1. Soit (u_n) une suite décroissante. Déterminer le signe de $u_4 - u_3$

2. Soit (u_n) une suite croissante. Déterminer le signe de $u_{11} - u_{10}$

Exercice 11

4

- 1. Soit (v_n) la suite définie sur \mathbb{N} par son premier terme $v_0=-1$ et la relation de récurrence $v_{n+1}=v_n+2$. Étudier les variations de (v_n) .
- 2. Soit (w_n) la suite définie sur \mathbb{N} par son premier terme $w_0 = 5$ et la relation de récurrence $w_{n+1} = w_n 3$. Déterminer le sens de variation de (w_n) .

Exercice 12

- 1(a) Rappeler les variations de la fonction inverse sur $]0; +\infty[$
- (b) En déduire que la suite (u_n) définie sur \mathbb{N}^* par $u_n = \frac{1}{n}$ est décroissante sur \mathbb{N}^* .
- 2(a) Rappeler les variations de la fonction carré sur $[0; +\infty[$
- (b) En déduire que la suite (v_n) définie sur $\mathbb N$ par $v_n=n^2$ est croissante sur $\mathbb N$.

II Suites de référence

II.1 Suites arithmétiques

Exercice 13

Les premiers termes d'une suite u sont donnés dans le tableau ci-dessous. Est-ce une suite arithmétique?

	n	1	2	3	4	5
ī	u_n	0,25	0,58	0,91	1,24	1,58

Exercice 14

u est la suite définie sur \mathbb{N} par $u_n = n^2 + 4n$. Cette suite est-elle arithmétique?

Exercice 15

u est la suite arithmétique de raison 5 et telle que $u_5=12$

- 1. Calculer u_3 et u_{10} .
- 2. Comment pourrait-on calculer plus rapidement ces termes en conjecturant l'expression de u_n en fonction de n?

Exercice 16

u est la suite arithmétique telle que $u_5 = 9$ et $u_6 = 28$

- 1. Calculer la raison de cette suite.
- 2. Quel est le sens de variation de cette suite?
- 3. Calculer u_8 .

Exercice 17

Après une crue exceptionnelle, le 10 octobre 2014, le niveau d'une rivière de l'Hérault était de 1,5 m au-dessus de son niveau normal. Lors de la décrue, le niveau a baissé de 15 cm par jour.

- 1. Modéliser l'évolution quotidienne du niveau de la rivière, en mètres, par une suite arithmétique dont le premier terme est 1,5.
- 2. Selon ce modèle, combien de jours auraient été nécessaires pour que la rivière retrouve son niveau normal?

Exercice 18

Dans une famille, les âges des trois enfants sont trois termes consécutifs d'une suite arithmétique et la somme de leurs âges est 27.

- 1. Quel est l'âge de la cadette?
- 2. On sait de plus que l'âge de la benjamine est le tiers de l'âge de la cadette. Donner l'âge des trois enfants.

II.2 Suites géométriques

Exercice 19

Dans chaque cas donner le terme u_2 de la suite géométrique u de raison q.

- 1. $u_0 = 5$ et q = 2.
- 2. $u_0 = -1$ et q = 3.
- 3. $u_1 = 18$ et $q = \frac{1}{3}$.
- 4. $u_0 = 7$ et q = 1.

Exercice 20

Un capital de $500 \in$ est placé sur un compte rémunéré au taux annuel d'intérêts composés de 2,5%. L'évolution au fil des ans de ce capital est modélisée par une suite géométrique u. Donner le premier terme et la raison de cette suite.

Exercice 21

u est la suite géométrique à termes positifs telle que $u_3=3,4$ et $u_5=21,25$.

- 1. Quelle est la raison de cette suite?
- 2. Calculer u_7 . Arrondir au dixième.

Exercice 22

Dans chaque cas, donner le sens de variation de la suite géométrique u telle que :

- 1. $u_0 = -3$ et q = 1,01
- 2. $u_0 = 2$ et q = 0, 7

Exercice 23

En 2005, année de sa création, un club de randonnée pédestre comptait 80 adhérents.

On a constaté chaque année que 10% des adhérents ne renouvellent pas leur adhésion au club.

1. Appliquer l'algorithme ci-dessous à l'entrée N=3. Que représente la valeur affichée en sortie?

$$\begin{array}{c|c} u \leftarrow 80 \\ \text{Pour } i \text{ allant de 1 à } N \\ & u \leftarrow 0,9u \\ \text{Fin Pour} \\ & u \leftarrow \lfloor u \rfloor \end{array}$$

2. Définir la suite v qui intervient dans cet algorithme, à l'aide d'une relation de récurrence.